miR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity
نویسندگان
چکیده
MicroRNA-34 (miR-34), in particular miR-34a, has a negative regulatory effect on osteosarcoma cell proliferation, migration and invasion. Notably, it is also a post‑transcriptional regulatory factor of (sex determining region Y)‑box 2 (Sox-2), which is required for osteosarcoma cell self‑renewal and tumorigenesis. As a direct regulator of Sox‑2, miR‑34a has been hypothesized to be greatly associated with the regulation of malignancies in osteosarcoma. To investigate the role of miR-34a in the malignancies of osteosarcoma, reverse transcription‑quantitative polymerase chain reaction was performed to detect the expression level of miR‑34a in osteospheres. The results revealed that the miR‑34a, b and c were suppressed in osteosarcoma stem‑like cells (OSCs) and osteospheres. The introduction of miR‑34a mimics and short hairpin (sh)RNA targeting Sox‑2 mRNA (shSox‑2) in human OSCs markedly reduced their transformation properties in vitro and their capacity to form tumors in soft agar. Furthermore, the epigenetic expression of miR‑34a and shSox‑2 inhibited the expression of the stem cell marker, stem cell antigen‑1 and led to the failure of osteosphere formation, respectively. The data of the present study indicated that the inhibitory role of miR‑34a on tumor growth and metastasis of osteosarcoma may function by reducing the maintenance of osteosphere self‑renewal capacity, elimination of tumorigenic ability and invasion of osteosarcoma in vitro. These findings may provide the basis for a novel therapeutic target of osteosarcomas based on inducing the expression of miR-34a.
منابع مشابه
Gene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کاملTargeting Epigenetic Regulation of miR-34a for Treatment of Pancreatic Cancer by Inhibition of Pancreatic Cancer Stem Cells
BACKGROUND MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). METHODOLOGY/PRINCIPAL FI...
متن کاملA novel miR-34a target, protein kinase D1, stimulates cancer stemness and drug resistance through GSK3/β-catenin signaling in breast cancer
One of the properties of human breast cancer cells is cancer stemness, which is characterized by self-renewal capability and drug resistance. Protein kinase D1 (PRKD1) functions as a key regulator of many cellular processes and is downregulated in invasive breast cancer cells. In this study, we found that PRKD1 was upregulated in MCF-7-ADR human breast cancer cells characterized by drug resista...
متن کاملmiR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملTM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141
Cancer stem-like cells have been identified in primary human tumors and cancer cell lines. Previously we found TM4SF1 gene was highly expressed in side population (SP) cells from esophageal squamous cell carcinoma (ESCC) cell lines, but the role and underlying mechanism of TM4SF1 in ESCC remain unclear. In this study, we observed TM4SF1 was up-regulated but miR-141 was down-regulated in SP cell...
متن کامل